TITANIUM alloys | iii an ium | - |--|--------------------------------|---------------------------------|---------------------|----------------------------|------------------------------|-------------------------------------|---------------------------|-------------------|--------------------------------------|--------------|-----------------------------------|-----------------------------|----------------------------------|-----------------------|-------------|--------------|-------------------|-------------|-----------------|---------------|--------------------|--------------|-------------------------|----------------------------| | Typical M | ech an ical | properti | ies of Ti° | [®] Alloys | | | | | | 11 | ndustry S | pecifica | tions | | | | Pr | oduct | Forms Av | vailable | from Daxi | ın | | | | | 0.2% proof stress
MPa | Tensile strength
MPa | Hongation % | Tensile modulus
GPa | Fatigue limit % of TS | Bend radius
on 2mm sheet | Density g/cm ³ | Beta Transus ±10C | UK Aerospace | France | Germany
Aerospace | Germany
Engineering | USA Aerospace | USA
Engineering | Rod
Rond | Bar
Barre | Billet
Bilette | Wire
Fil | Plate
Plaque | Sheet
Tôle | Strip
Feuillard | Tube
Tube | Extrusions
Extrusion | Castings
Pièces Coulées | | | Limite élastique
à 0.2% MPa | Résistance
à la traction MPa | Allongement % | Module
d'élasticité GPa | Limite de fatigue
% de RT | Rayon de pliage
sur toles de 2mm | Densité g/cm³ | Beta Transus ±10C | Grande-Bretagne
Aéronautique | France | Allemagne
Aéronautique | Allemagne
Mécanique | USA Aéronautique | USA
Mécanique | Stäbe | Stangen | Vormaterial | Draht | Platten | Blech | Blech auf Band | Rohr | Profile | Gussteile | | | 0.2% Streckgrenze MPa | Zugfestigkeit MPa | Bruchdehnung % | Elastizitätsmodul
GPa | Dauerschwingfestigke | it Biegeradius bei | Dichte g/cm³ | Beta Transus ±10C | Großbrittanien
Luft-und Raumfahrt | Frankreich | Deutschland
Luft-und Raumfahrt | Deutschland
Maschinenbau | USA Luft-und
Raumfahrt | USA
Maschinenbau | | | | | | | | | | S. | | <i>Ti</i> 35A | 220 | 345 | 35 | 105-120 | 50 | 2t | 4.51 | 890 | BS TA. 1 | T-35 | 3.7024 | 3.7025 | | ASTM Gr. 1 | - | | | | | | = | | | | | <i>Ti</i> 50A | 345 | 485 | 28 | 105-120 | 50 | 2.5t | 4.51 | 915 | BS TA. 2, 3, 4, 5 | T-40 | 3.7034 | 3.7035 | AMS 4902, 4941 | | - | | | | | - | | | | | | Ti 65A
Ti 75A | 450
560 | 585
680 | 25 | 105-120
105-120 | 50 | 2.5t
3.0t | 4.51 | 920
950 | DTD 5023, 5273
BS TA. 6 | T-50
T-60 | 3.7055
3.7064 | 3.7065 | AMS 4900
AMS 4901 | ASTM Gr. 3 ASTM Gr. 4 | | | • | | | | | - | - | • | | Ti 100A | 430 | 540 | 23
16 | 105-120 | 50 | - 3.0t | 4.51 | 960 | BS TA. 7, 8, 9 | T-60 | 3.7064 | 3.7065 | AMS 4901
AMS 4921 | ASIM Gr. 4 | | | | | - | | | | | | | Ti Code 12 | 460 | 600 | 22 | 105-120 | 50 | 2.5t | 4.51 | 890 | 25 II. 7, 6, 7 | 1 00 | 3.7001 | 3.7003 | 711/15 1/21 | ASTM Gr. 12 | - | | | | | | | | | | | T: 020 | Ti 230 Annealed STA | 510
600 | 620
760 | 25
20 | 105-120
105-120 | 60-65 | 2.5t
- | 4.56 | 895 | BS TA. 21, 22, 23 | T-U2 | 3.7124 | | | | • | | • | | | | | | | | | Ti 62S Annealed Sheet/plate and E | 960
Billet/Bar | 1000 | 16 | 128 | 60 | 4.5t | 4.44 | 1024 | | | | | | ASTM (Pending) | | | | | | | | | | | | Ti 6-4
Sheet | 980 | 1035 | 12 | 105-120 | 55-60 | 5t | 4.42 | 995 | BS TA. 10, 11, 12, | T-A6V | 3.7164 | 3.7165 | AMS 4911, 4928 | ASTM Gr. 5 | | | | | | | | | | - | | Rod
Fastener Stock | 885
1075 | 985
1205 | 15
14 | 105-120 | | | | | 13, 28, 56
DTD 5363 | | | | 4932, 4935, 4954
4965, 4967 | + | | | | | | | | | | | | Ti 3-2.5 | 550 | 650 | 15 | 105-120 | 50 | 2.5t | 4.51 | | | | | | | ASTM Gr. 9 | - | | | | | | | | | | | Ti 367 | 800* | 900* | 10* | 105-120 | 55-60 | _ | 4.52 | 1015 | | | | | | | - | - | - | | | | | | - | | | Ti 10-2-3
Aged Billet/Bar
Aged Billet/Bar
Aged Billet/Bar | 1170
1070
970 | 1260
1170
1040 | 10
12
15 | 107
108
103 | 75
75
75 | | 4.65 | 800 | | | | | AMS 4984
AMS 4986
AMS 4987 | | | | | | | | | | | | | Ti 550 | | | | 110-120 | 50-60 | | 4.60 | 975 | BS TA. 45, 46, 47 | TAADE | 3.7184 | | 71115 1507 | | _ | | | | | | | | | | | ST
STA
7i 551 | 930
1070 | 1080
1200 | 12
14 | | | _ | 4.00 | 973 | 48, 49, 50, 51, 57 | I-A4DE | 3.7164 | | | | _ | - | - | | - | - | | | - | | | <25mm
25-100mm | 1210
1200 | 1450
1310 | 10
10 | 110-120 | 40-50 | _ | 4.60 | 1050 | BS TA. 38, 39, 40
41, 42 | | | | | | • | • | • | | | | | | • | | | Ti 6-6-2 Annealed STA | 1005
1105 | 1090
1205 | 10
8 | 115 | 45 | | 4.53 | 945 | | | | | | | | | • | | | | | | | | | 7i 15-3
Annealed Strip/Si
Aged(482C) | 780
1210 | 825
1300 | 16 | 70
107 | | 2t | 4.78 | 760 | | | | | AMS 4914A | | | | | | | | | | | - | | Aged(538C) | 1050 | 1160 | <u>1</u> 1 | 103 | 65 | Ti 21S Annealed Strip/Sh | neet 880 | 915 | 15 | 83 | | 2.5t | 4.94 | 800 | | | | | AMS G92AP | ASTM Gr. 21 | | | | | - | | | | | | | Aged(538C)
Aged(593C)
Overaged | 1210
1035
860 | 1310
1100
930 | 8
10
14 | 102
100
99 | Ti 6-2-4-2 | 895 | 1000 | 12 | 115 | 50 | 4.5t | 4.54 | 996 | | | | | AMS 4919 | | | | | | | | | | | | | 80C Ti 17 | 895
590 | 700 | 15 | | | | | | | | | | -2.25 1717 | | | | | | | | | | | | | Aged Billet/Bar 7i 6-2-4-6 R T | 1100 | 1200 | 10 | 109 | 75
50 | | 4.65 | 940 | | | | | | | | - | | | | | | | | | | R.T.
425C | 1100
725 | 1200
930 | 12
15 | | | | | 7.10 | | | | | | | | | | | | | | | | | | Ti 679 Quenched and ag | ged 970* | 1110* | 8* | 105-110 | 55-60 | _ | 4.84 | 950 | | | | | AMS 4974 | | | | | | | | | | | | | 7i 685
R.T.
520C | 900
525 | 1030
670 | 10
12 | ~125 | 50 | <u>-</u>
- | 4.45 | 1020 | BS TA. 43, 44 | T-A6ZD | 3.7154 | | | | | | | | | | | | | | | 7i 8-1-1
Annealed Sheet | 930 | 1020 | 13 | 125 | 45 | 4.5t | 4.36 | 1040 | | T-A8DV | | | AMS 4915, 4916 | | | | | | | | | | | | | Ti 829 R.T. 540C | 860
500 | 980
630 | 10
13 | ~120 | 50 | | 4.51 | 1015 | | | | | | | | | | | | | | | | | | Ti 834
R.T. | 930 | 1050 | 11 | ~120 | 50 | 6t | 4.55 | 1045 | | | T-A6EZr4Nb | | | | | | | | | | | | | | | 7i 1100
R.T.
600C | 910 | 1000 | 8 | 120 | 50 | 6t | 4.50 | 1015 | | | | | | | | | | | | | | | | | | | 480 | 620 | 11 | *Minimum Value, I | not typical | ## CONVERSION KEY: 1 mm = 0.039 in 1 MPa = 0.145 ksi 1 GPa = 0.145 Msi $g/cm^3 = 0.0361 lbs/in^3$ °F = 1.8°C +32 ## Timet metallurgists have developed a series of propRletary alloys which are widely used | | COM M ERCIALLY PURE (CP) GRADES OF TITANIUM | | | | | | | |---|--|--|--|--|--|--|--| | Ti 35A-100A | The mechanical properties of CP titanium are influenced by small additions of oxygen and iron. By careful control of these additions, the various grades of commercially pure titanium are produced to give properties suited to different applications. Ti 35A contains the lowest oxygen and iron levels, producing the most formable grade of material. Ti 50A, 65A, 75A, and 100A have progressively higher oxygen contents and correspondingly higher strength levels. Palladium stabilized grades of these materials are also available for enhanced corrosion resistance. | | | | | | | | Ti Code 12 | Highly weldable, near-alpha alloy, exhibiting improved strength and temperature capability over CP combined with superior crevice corrosion resistance and excellent resistance under oxidizing to mildly reducing conditions especially chlorides. | | | | | | | | | MEDIUM AND HIGH STRENGTH ALLOYS | | | | | | | | 77 230 (Ti-2.5% Cu) | This binary, age hardening alloy combines the easy formability and weldability of commercially pure titanium with improved mechanical properties, particularly at temperatures up to 350° C. | | | | | | | | <i>Ti</i> 62S (Ti-6% Al-2% Fe-0.1% Si) | Properties and processing characteristics equivalent to or better than \mathcal{T}_1 6-4, but with significantly higher stiffness (elastic modulus). Due to the use of iron as the beta stabilizer, the alloy has lower formulation costs than \mathcal{T}_1 6-4. The combination of reasonable cost and excellent mechanical properties make \mathcal{T}_1 62S a practical substitute for many engineering materials. | | | | | | | | Ті 6-4
(Tі-6% Al-4% V) | A versatile medium strength alloy, the "workhorse" π 6-4 exhibits good tensile properties at room temperature, creep resistance up to 325°C and excellent fatigue strength. It is often used in less critical applications up to 400°C. π 6-4 is the alloy most commonly used in wrought and cast forms. | | | | | | | | <i>Ti</i> 3-2.5 (TI-3% AI-2.5% V) | Cold formable and weldable, this alloy is used primarily for honeycomb foil and hydraulic tubing applications. Industrial applications such as pressure vessels and piping also utilize this alloy. Available with Pd stabilization to enhance corrosion resistance. | | | | | | | | Ti 367
(Ti-6% Al-7% Nb) | π 367 is a dedicated, medium strength, titanium alloy for surgical implants. | | | | | | | | 77 10-2-3
(Ti-10% V-2% Fe-3% Al) | A readily forgeable alloy that offers excellent combinations of strength, ductility, fracture toughness and high cycle fatigue strength. Typically used for critical aircraft structures, such as landing gear. | | | | | | | | 7i 550 (Ti-4% Al-4% Mo-2% Sn-0.5% Si) | Ti 550, like Ti 6-4, is readily forgeable and is generally used in a heat treated condition. It has superior room and elevated temperature tensile strength fatigue strength compared to Ti 6-4, and is creep resistant up to 400°C. | | | | | | | | Ti 551 (Ti-4% Al-4% Mo-4% Sn-0.5% Si) | π 551 has high strength and is creep resistant up to 400°C. It has a similar composition to π 550, apart from an increase in tin content, which gives increased strength at room and elevated temperatures. | | | | | | | | 77 6-6-2
(Ti-6% Al-6% V-2% Sn-0.5% Fe-0.5% Cu) | π 6-6-2 offers improved strength properties and greater depth hardenability compared with π 6-4. | | | | | | | | 77 15-3
(Ti-15% V-3% Cr-3% Sn-3% Al) | Cold formable and weldable, this strip alloy is primarily used for aircraft ducting, pressure vessels and other fabricated sheet metal structures up to 300°C. | | | | | | | | 77 21S (Ti-15% Mo-3% Nb-3% Al-0.2% Si) | Offers the good cold formability and weldability of a beta strip alloy, but with greatly improved oxidation resistance and creep strength. Aerospace applications include engine exhaust plug and nozzle assemblies. | | | | | | | | HIGH TEM PERATURE ALLOYS | | | | | | | |--|--|--|--|--|--|--| | π 6-2-4-2 has good tensile creep and fatigue properties up to 540°C. It is the most commonly used high temperature alloy in jet engine compressors and airframe structures. | | | | | | | | High strength, deep hardenable forging alloy primarily for jet engines. Allows heat treatment to variety of strength levels in sections up to 6 inches. Offers good ductility and toughness, as we as good low cycle and high cycle fatigue properties. | | | | | | | | π 6-2-4-6 is a stronger derivative of π 6-2-4-2 offering higher strength, depth hardenability and elevated temperature properties up to 450°C | | | | | | | | Ti 679 has excellent tensile strength and is creep resistant up to 450°C. | | | | | | | | π 685 possesses excellent tensile strength and creep resistance up to 520°C. It is weldable and has good forging characteristics. | | | | | | | | Designed for creep resistance up to 450° C, used primarily in engine applications such as forged compressor blades and disks. This alloy has a relatively high tensile modulus to density ratio compared to most commercial titanium alloys. | | | | | | | | Ti 829 combines creep resistance up to 540°C with good oxidation resistance. It is weldable and like Ti 685, Ti 829 has good forgeability.0.25% Mo-0. | | | | | | | | 77.834 is a near alpha titanium alloy offering increased tensile strength and creep resistance up to 600° C together with improved fatigue strength when compared with established creep resistant alloys such as $77.6-2-4-2$, 77.829 and 77.685 . Like these alloys, it is weldable and has good forgeability. | | | | | | | | A near alpha, high temperature creep resistant alloy developed for elevated temperature use in the range of 600°C that offers the highest combination of strength, creep resistance, fracture toughness and fatigue crack growth resistance. | | | | | | | | DEVELOPM ENTAL ALLOYS | | | | | | | | A development from the alloy <i>Ti</i> 21S with the aluminum additions removed and targeted at biomedical applications. | | | | | | | | A metastable beta alloy produced in bar or rod form and targeted at titanium spring and other high strength requirement applications. | | | | | | | | A near alpha alloy with excellent weldability, seawater stress corrosion cracking resistance and high dynamic toughness. | | | | | | | | | | | | | | | For technical information on these developmental alloys, or technical advice on any $\overline{7}i$ alloy, please call the following numbers: Henderson, NV, USA (702) 566-4403 Witton, UK (0)121-356-1155 x308 ## DAXUN Worldwide Sales Locations: Global Headquarters No. 32, Chengnan Road, Xinwu District, Wuxi City, Jiangsu Province, China Tel: 86 (510) 88990220 Fax: 86 (510) 85368895 Website: www.daxuns.com First in Titanium Worldwide